Academic Course Description

BHARATH UNIVERSITY

Faculty of SCIENCE AND HUMANITIES

Department of Civil Engineering

BCH101 - ENGINEERING CHEMISTRY I FIRST Semester, 2017-18 (ODD Semester)

Course (catalog) description

The purpose of this course is to develop a strong foundation in the principles and methods to understand the properties in of the surface phenomenon, phase rule and alloys, advanced Engineering materials, fuels and analytical techniques.

Compulsory/Elective course: Elective course: Compulsory for All first year students

Credit & Contact hours : 3 credits & 45 hours

Course Coordinator: Dr.A. Manikandan, Associate Professor

Instructors :

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Dr. A. Manikandan	First Year B.Tech, Students	First year Block		Chemistryhod2017@gmail.com	9.00 - 9.50 AM
Faculties of chemistry Department	First Year B.Tech, Students	First year Block		Chemistryhod2017@gmail.com	9.00 - 9.50 AM

Relationship to other courses:

Pre –requisites : +2 level chemistry

Assumed knowledge : The students will have a chemistry, physics and mathematics

background obtained at a higher secondary (or equivalent) level.

Following courses : BCH101, BCH102 and Practical I

Syllabus Contents

UNIT I WATER TECHNOLOGY

9

Introduction-Characteristics: Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS 9

Introduction-Polymers- definition – polymerization – degree of polymerization – types of polymerization – Addition polymerization and Condensation polymerization – Mechanism of Polymerization – free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics – preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY

9

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes: Standard Hydrogen electrode -Calomel electrode Ion selective electrode: Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations: Potentiometer titrations (redox - Fe²⁺vs dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

9

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion - different types - galvanic corrosion - differential aeration corrosion - mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control - sacrificial anode and impressed cathodic current methods - Protective coatings: Paints - constituents of the paint and their functions Metallic coatings - electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction: Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass - Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries: Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries: Lead–acid storage battery –working –uses Nickel–cadmium battery - working –uses Solid – state battery: Lithium battery

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

Computer usage: Yes

Professional component

General - 0%

Basic Sciences - 100%

Engineering sciences & Technical arts - 0%

Professional subject - 0%

Broad area: Water Technology, Polymer, Electrochemistry, Corrosion and Corrosion control, Non-Conventional Energy Sources and Storage Devices

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 2 nd week	Session 1 to 45	3 Hrs
5	University	TBA	All sessions / Units	3 Hrs.
	Examination			

Mapping of Instructional Objectives with Program Outcome

To enhance the fundamental knowledge in Chemistry and its applications relevant to various streams of Engineering and Technology. This course emphasizes:		Correlates to program outcome	
		M	L
Understand about the gaseous properties in solid of the surface phenomenon.	a,e	g.i	k
Understand the principle and properties of the phase rule and alloys.	С	e,j	b.h
Acquire Knowledge on instruments involved in the analytical techniques	d	b	i
Acquire Knowledge on fuels	a	c,m	d,f

To Understand the impact of Advanced Engineering materials in	g	b,c
technical uses		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
	UNIT -I: WATE	R TECHNOLOGY	
1.	INTRODUCTION TO WATER TECHNOLOGY	No	
2.	HARDNESS - TYPES , EXPRESSION UNITS	No	
3.	ESTIMATION OF HARDNESS	YES	
4.	ESTIMATION OF ALKALINITY	Yes	
5.	DOMESTIC WATER TREATMENT	Yes	
6.	BOILER TROUBLES	No	[T1, R2]
7.	INTERNAL & EXTERNAL CONDITIONING	Yes	
8.	DESALINATION	Yes	
9.	REVERSE OSMOSIS	Yes	
	UNIT II: POLY	YMERS - 9 HRS	
10.	INTRODUCTION & CLASSIFICATION	No	
11.	TERMS & DEFINITION	Yes	
12.	TYPES OF POLYMERISATION	Yes	
13.	FREE RADICAL MECHANISM	No	[T2 D2]
14.	PLASTICS - TYPES, PVC, TEFLON	Yes	[T2, R2]
15.	INTRODUCTION & CLASSIFICATION	YES	

16.	TERMS & DEFINITION	YES	
17.	TYPES OF POLYMERISATION	No]
18.	FREE RADICAL MECHANISM	No	
	UNIT III: ELECTRO	CHEMISTRY - 9 HRS	
19.	INTRODUCTION TO	No	
	ELECTROCHEMISTRY		
20.	ELECTROCHEMICAL CELL -	No	-
	DEFINITION		
21.	NERNST EQUATION -	No	
	DERIVATION		
22.	EMF MEASUREMENTS –	No	ובכם כדו
	POGENDROFF		[T3, R32]
23.	WORKING HYDROGEN ,	No	
	CALOMEL ELECTRODE		
24.	ELECTROCHEMICAL SERIES	Yes	
	& APPLICATIONS		
25.	DETERMINATION OF Ph, ION	No	
	SELECTIVE		
26.	POTENTIOMETRIC	No	
	TITRATIONS		
27.	CONDUCTOMETRIC	No	
	TITRATIONS		
UNIT IV:	CORROSION AND CORROSION	CONTROL - 9 HRS	
28.	INTRODUCTION -	No	
	CORROSION		f==
29.	TYPES OF CORROSION	YES	[T2, R3]
30.	ELECTROCHEMICAL	YES	-
	CORROSION		
31.	FACTORS INFLUENCING	No	-
	CORROSION		
32.	MODES OF CORROSION	Yes	-
	CONTROL		
33.	TYPES OF INHIBITORS	Yes	
34.	PROTECTIVE COATING -	No	
	PAINTS		

35.	ELECTRO PLATING OF GOLD OVER COPPER	No	
UNIT	V: NON-CONVENTIONAL ENERO STORAGE DEVICES - 9 H		
	STORUGE DE VICES DE		
36.	INTRODUCTION - NUCLEAR	No	_
	REACTION		
37.	TYPES OF NUCLEAR	No	
	REACTION		[T1, T2, R3]
38.	NUCLEAR ENERGY CRITICAL	No	
	MASS - SUPER CRITICAL MASS		
	- SUB – CRITICAL MASS		
39.	LIGHT WATER NUCLEAR	No	
	REACTOR FOR POWER		
40.	GENERATION BREEDER REACTOR SOLAR	No	_
40.	ENERGY CONVERSION –	NO	
	SOLAR CELLS – WIND ENERGY		
	FUEL CELLS		
41.	HYDROGEN – OXYGEN FUEL	No	
	CELL BATTERIES PRIMARY		
	AND SECONDARY BATTERIES		
42.	LEAD-ACID STORAGE	No	
	BATTERY –WORKING –		
43.	USES NICKEL-CADMIUM	No	
	BATTERY		
45.	STATE BATTERY : LITHI	No	
	BATTERY		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

Formal face-to-face lectures
Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and brainstorming skills.
Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	5%
Cycle Test – II	5%
Model Test	5%
Assignment	5%
Attendance	10%
Final exam	70%

Prepared by: Dr. A. Manikandan, Associate Professor, Department of Chemistry

Dated:

Addendum

ABET Outcomes expected of graduates of B.Tech.Civil Engineering/ program by the time that they graduate:

- a. An ability to apply knowledge of Mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering

practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful

profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non

engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for

planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial

skills, successful team work in various private and government organizations both at the national and

international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many

languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are

safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature	
Dr. A. Manikandan		

Course Coordinator HOD/CIVIL